
Hans-Petter Halvorsen

https://www.halvorsen.blog

Raspberry Pi Pico
Thermistor Temperature Sensor

• Introduction
–Raspberry Pi Pico
–Thonny Python Editor
–MicroPython

• Thermistor 10K Temperature Sensor
• Wiring and Voltage Divider
• MicroPython Examples

Contents

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction

Table of Contents

Introduction
• In this Tutorial we will show how we can use a

Thermistor with Raspberry Pi Pico
• We will use MicroPython and the Thonny Python

Editor
• A Thermistor Temperature Sensor is a small and

cheap temperature sensor
• We will use a 10K NTC Thermistor in this tutorial

• Raspberry Pi Pico
• A Micro-USB cable
• A PC with Thonny Python Editor (or another

Python Editor)
• Breadboard
• Electronics Components like LED, Resistors,

Jumper wires, etc.
• Thermistor 10K

What do you need?

• Raspberry Pi Pico is a microcontroller board
developed by the Raspberry Pi Foundation

• Raspberry Pi Pico has similar features as Arduino
devices

• Raspberry Pi Pico is typically used for Electronics
projects, IoT Applications, etc.

• You typically use MicroPython, which is a
downscaled version of Python, in order to program it

Raspberry Pi Pico

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/1

Pi
co

 P
in

ou
t

https://www.raspberrypi.com/products/raspberry-pi-pico/

https://www.raspberrypi.com/products/raspberry-pi-pico/

Thonny
• Thonny is a simple and user-friendly

Python Editor
• Cross-platform: Windows, macOS and

Linux
• Built-in support for the Raspberry Pi Pico

hardware/MicroPython firmware
• Its free
• Download: https://thonny.org

https://thonny.org/

• MicroPython is a downscaled version of
Python

• It is typically used for Microcontrollers and
constrained systems (low memory, etc.)

• Examples of such Microcontrollers that
have tailormade MicroPython firmwares
are Raspberry Pi Pico and Micro:bit

MicroPython

https://micropython.orghttps://docs.micropython.org/en/latest/index.html

https://micropython.org/
https://docs.micropython.org/en/latest/index.html

• The first time you need to install the
MicroPython Firmware on your
Raspberry Pi Pico
• You can install the MicroPython

Firmware manually or you can use
the Thonny Editor

MicroPython Firmware

Install MicroPython Firmware using Thonny

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3

Hans-Petter Halvorsen

https://www.halvorsen.blog

Thermistor
Temperature Sensor

Table of Contents

Raspberry Pi Pico

10K Thermistor

Thermistor

Our Thermistor is a so-called NTC (Negative Temperature Coefficient).
In a NTC Thermistor, resistance decreases as the temperature rises.

There is a non-linear relationship between resistance and excitement. To find the
temperature we can use the following equation (Steinhart-Hart equation):
1
𝑇
= 𝐴 + 𝐵 ln(𝑅) + 𝐶 ln(𝑅) ! where 𝐴, 𝐵, 𝐶 are constants given below

𝐴 = 0.001129148, 𝐵 = 0.000234125 𝑎𝑛𝑑 𝐶 = 8.76741𝐸 − 08

A thermistor is an electronic component that changes
resistance to temperature - so-called Resistance
Temperature Detectors (RTD). It is often used as a
temperature sensor.

[Wikipedia]

Steinhart-Hart equation
1
𝑇!

= 𝐴 + 𝐵 ln(𝑅) + 𝐶 ln(𝑅) "

𝑇! =
1

𝐴 + 𝐵 𝑙𝑛 𝑅# + 𝐶 𝑙𝑛 𝑅# "

Steinhart-Hart Equation
To find the Temperature we can use Steinhart-Hart Equation:

1
𝑇!

= 𝐴 + 𝐵 ln(𝑅) + 𝐶 ln(𝑅) "

This gives:

𝑇. =
1

𝐴 + 𝐵 ln 𝑅 + 𝐶 ln 𝑅 !

Where the Temperature 𝑇! is in Kelvin
𝐴, 𝐵 𝑎𝑛𝑑 𝐶 are constants

The Temperature in degrees Celsius will then be:

𝑇3 = 𝑇. − 273.15

𝐴 = 0.001129148
𝐵 = 0.000234125
𝐶 = 0.0000000876741

Hans-Petter Halvorsen

https://www.halvorsen.blog

Wiring and
Voltage Divider

Table of Contents

Raspberry Pi Pico

• Raspberry Pi Pico
• Breadboard
• Thermistor 10K (Temperature Sensor)
• Wires (Jumper Wires)
• Resistor 𝑅 = 10 𝑘Ω

Hardware

Thermistor Wiring
Thermistor𝑅 = 10 𝑘Ω

3.3v
GND

https://pico.pinout.xyz

https://pico.pinout.xyz/

Thermistor Voltage Divider Wiring

[https://en.wikipedia.org/wiki/Voltage_divider]

The wiring is called a “Voltage divider”:

GND

+3.3V

𝑅 = 10𝑘Ω

Analog In (AI)

10𝑘 Thermistor
The resistance in the Thermistor
changes with the temperature

General Voltage Divider

https://learn.sparkfun.com/tutorials/voltage-dividers/all

Formula:

𝑉!"# = 𝑉$%
𝑅&

𝑅' + 𝑅&𝑅#

𝑅$

𝑉%&'

𝑉()

+

+
-

-

We want to find 𝑉BCD

The Resistor 𝑅$ has a specific value,
while 𝑅# is a variable resistor

https://learn.sparkfun.com/tutorials/voltage-dividers/all

Voltage Divider for our System

𝑉BCD = 𝑉EF
𝑅D

𝑅G + 𝑅D

Voltage Divider Equation:

We want to find 𝑅':
𝑅' - 10k Thermistor. This varies with
temperature. From Datasheet we
know that 𝑅' = 10𝑘Ω @25℃

𝑅'

𝑅* = 10𝑘Ω

𝑉%&'

𝑉()
+

+
-

-

3.3𝑉

Steps:
1. We wire the circuit on the Breadboard and connect it to the Raspberry Pi Pico device
2. We measure 𝑉%&' using the Raspberry Pi Pico device
3. We calculate 𝑅' using the Voltage Divider equation
4. Finally, we use Steinhart-Hart equation for finding the Temperature

𝑅! =
"!"##$
"%&$"!"#

Hans-Petter Halvorsen

https://www.halvorsen.blog

MicroPython
Examples

Table of Contents

Raspberry Pi Pico

Thermistor Temperature Sensor

4 main steps:

1. Get 𝑉BCD from the ADC on Raspberry Pi Pico

2. Calculate 𝑅D =
J!"#K$
J%&LJ!"#

3. Calculate 𝑇. =
M

NOP QF K# O3 QF K# '

4. Calculate 𝑇3 = 𝑇. − 273.15

Pseudo Code

ADC Value to Voltage Value

ADC = 0 -> 0v
ADC = 65535 -> 3.3v

The read_u16() function gives a value between 0 and 65535. It must be converted to a
Voltage Signal 0 - 3.3v

3.3𝑉

0

𝑦(𝑥) = 𝑎𝑥 + 𝑏
0𝑉

65535

𝑦(𝑥) =
3.3

65535
𝑥

This gives the following conversion formula:

Analog Pins: The built-in Analog-to-Digital Converter (ADC) on Pico is 16bit, producing
values from 0 to 65535.

//Get Voltage
adc = thermistor.read_u16()
Vout = (3.3/65535)*adc

//Voltage Divider. Calculate R
float Vin = 3.3;
float Ro=10000;
float Rt = (Vout*Ro)/(Vin-Vout);

//Steinhart constants
float A = 0.001129148;
float B = 0.000234125;
float C = 0.0000000876741;

//Steinhart-Hart Equation
float TempK = 1 / (A + (B * ln(Rt)) + (C * ln(Rt)**3));

//Convert from Kelvin to Celsius
float TempC = TempK - 273.15;

Pseudo Code

Python
from machine import ADC
from time import sleep
import math

adcpin = 26
thermistor = ADC(adcpin)

Voltage Divider
Vin = 3.3
Ro = 10000 # 10k Resistor

Steinhart Constants
A = 0.001129148
B = 0.000234125
C = 0.0000000876741

while True:
Get Voltage value from ADC
adc = thermistor.read_u16()
Vout = (3.3/65535)*adc

Calculate Resistance
Rt = (Vout * Ro) / (Vin - Vout)
Rt = 10000 # Used for Testing. Setting Rt=10k should give TempC=25

Steinhart - Hart Equation
TempK = 1 / (A + (B * math.log(Rt)) + C * math.pow(math.log(Rt), 3))

Convert from Kelvin to Celsius
TempC = TempK - 273.15

print(round(TempC, 1))
sleep(5)

1. Get 𝑉!"# from the DAQ device

2. Calculate 𝑅# =
$!"#%$
$%&&$!"#

3. Calculate 𝑇' =
(

)*+ ,- %# *. ,- %# '

4. Calculate 𝑇. = 𝑇' − 273.15

5. Present 𝑇. in the User Interface

The Code works as follows:

Python v2

import math

def thermistorTemp(Vout):

Voltage Divider
Vin = 3.3
Ro = 10000 # 10k Resistor

Steinhart Constants
A = 0.001129148
B = 0.000234125
C = 0.0000000876741

Calculate Resistance
Rt = (Vout * Ro) / (Vin - Vout)

Steinhart - Hart Equation
TempK = 1 / (A + (B * math.log(Rt)) + C * math.pow(math.log(Rt), 3))

Convert from Kelvin to Celsius
TempC = TempK - 273.15

return TempC

from machine import ADC
from time import sleep
import thermistor

adcpin = 26
sensor = ADC(adcpin)

while True:
adc = sensor.read_u16()
Vout = (3.3/65535)*adc

TempC = thermistor.thermistorTemp(Vout)

print(round(TempC, 1))

sleep(5)

thermistor.py

Thermistor Application:
Here, we have made a separate Python
function for the Thermistor logic. This makes
it easy to use this part in several Applications.

In order to make this work the “thermistor.py”
needs to be placed on the Pico.
You can use the “Files” tool in the Thonny Editor

Py
th

on
 C

od
e

v3
class Thermistor:

def __init__(self, pin):
self.thermistor = ADC(pin)

def ReadTemperature(self):
Get Voltage value from ADC
adc_value = self.thermistor.read_u16()
Vout = (3.3/65535)*adc_value

Voltage Divider
Vin = 3.3
Ro = 10000 # 10k Resistor

Steinhart Constants
A = 0.001129148
B = 0.000234125
C = 0.0000000876741

Calculate Resistance
Rt = (Vout * Ro) / (Vin - Vout)

Steinhart - Hart Equation
TempK = 1 / (A + (B * math.log(Rt)) + C * math.pow(math.log(Rt), 3))

Convert from Kelvin to Celsius
TempC = TempK - 273.15

return round(TempC,2)

TemperatureSensors.py

Here, we have taken it one step
further by making a separate Python
Class and Python Module for the
Thermistor logic. This makes it easy to
use this part in several Applications
and Code structure is improved

Py
th

on
 C

od
e

v3
from TemperatureSensors import Thermistor
from time import sleep

adcpin = 26
thermistor = Thermistor(adcpin)

while True:
TempC = thermistor.ReadTemperature()
print(TempC)
sleep(5)

Main Application:

• Raspberry Pi Pico:
https://www.raspberrypi.com/products/raspberry-pi-pico/

• Raspberry Pi Foundation:
https://projects.raspberrypi.org/en/projects?hardware[]=pico

• Getting Started with Pico:
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico

• MicroPython:
https://docs.micropython.org/en/latest/index.html

Raspberry Pi Pico Resources

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects?hardware%5b%5d=pico
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico
https://docs.micropython.org/en/latest/index.html

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

